Chinese Population in Michigan by City : 2025 Ranking & Insights

The Chinese population in Michigan is reported as 66,581, with the largest concentrations in cities like Ann Arbor (8,590), Troy (4,373), and Novi (2,654). Interestingly, the combined city-level total exceeds the statewide figure - a discrepancy that may reflect rounding, reporting lags, or cross-boundary overlaps in census data. This distribution highlights strong urban clustering alongside possible undercounts in state-level aggregates. The analysis below explores how Chinese communities take shape across Michigan and how these patterns compare with other states across the nation.

Top 5 cities with the largest Chinese population in Michigan

  • 1
    Ann Arbor
    Chinese population in Ann Arbor is 8,590
    7.09% of Ann Arbor population is Chinese
  • 2
    Troy
    Chinese population in Troy is 4,373
    5.01% of Troy population is Chinese
  • 3
    Novi
    Chinese population in Novi is 2,654
    4.01% of Novi population is Chinese
  • 4
    Rochester Hills
    Chinese population in Rochester Hills is 2,510
    3.30% of Rochester Hills population is Chinese
  • 5
    East Lansing
    Chinese population in East Lansing is 2,351
    5.18% of East Lansing population is Chinese

Overview of Chinese population in Michigan

  • Population Count and Percentage: American Community Survey data indicate Michigan contains 66,581 Chinese residents (0.66% of 10.1 million total state population), positioning the state at the 72nd percentile nationally among U.S. states for Chinese population concentrations.
  • Comparison to State and National Averages: U.S. Census surveys show Michigan's Chinese demographic representation of 0.66% remains below the national average of 1.6%, positioning the state below typical U.S. demographic distribution patterns.
  • Share of Total National Population: Official American Community Survey document Michigan's 66,581 Chinese residents constitute 1.2% of the nation's total Chinese population of 5.4 million, providing the state with a measurable but modest share of the national demographic community.
  • Population Density per Square Mile: U.S. Census Bureau's American Community Survey data indicates Michigan maintains 1.2 Chinese Americans per square mile, marginally below the national average of 1.5 per square mile, placing the state near national demographic representation levels.
  • Need additional overviews? Extended research data available for purchase and license. ➔

1,552 Cities in Michigan Ranked by Chinese Population

American Community Survey data [1] show Chinese population in Michigan present in Ann Arbor, Troy, and Novi, along with several other incorporated cities reporting non-zero populations. The table below provides broader statistics, including total population figures, density measures, and demographic distributions based on current ACS data for all incorporated cities included in this analysis*.
cities in Michigan ranked by Chinese population count
Rank by Chinese Population
City
Chinese Population
% of Total City Population
% of Total Michigan Chinese Population
5 Year Rank Trend
1 Ann Arbor 8,590 7.09% 12.90%
2 Troy 4,373 5.01% 6.57%
3 Novi 2,654 4.01% 3.99%
4 Rochester Hills 2,510 3.30% 3.77%
5 East Lansing 2,351 5.18% 3.53%
6 Canton charter township 2,247 2.29% 3.37%
7 Pittsfield charter township 2,130 5.44% 3.20%
8 2,058 4.70% 3.09%
9 1,457 0.74% 2.19%
10 1,432 1.07% 2.15%
11 1,284 1.96% 1.93%
12 1,088 1.31% 1.63%
13 1,023 0.91% 1.54%
14 1,011 0.16% 1.52%
15 972 3.10% 1.46%
16 908 3.20% 1.36%
17 831 2.86% 1.25%
18 808 1.84% 1.21%
19 799 0.80% 1.20%
20 756 4.30% 1.14%
21 673 0.92% 1.01%
22 671 1.16% 1.01%
23 592 0.63% 0.89%
24 558 0.40% 0.84%
25 556 1.40% 0.84%
26 550 2.21% 0.83%
27 516 0.56% 0.78%
28 508 1.33% 0.76%
29 506 1.80% 0.76%
30 504 10.52% 0.76%
31 452 0.57% 0.68%
32 450 3.48% 0.68%
33 424 0.78% 0.64%
34 418 0.39% 0.63%
35 371 0.67% 0.56%
36 367 1.83% 0.55%
37 350 0.50% 0.53%
38 342 2.32% 0.51%
39 319 1.68% 0.48%
40 316 0.51% 0.47%
41 315 1.32% 0.47%
42 314 0.41% 0.47%
43 307 2.69% 0.46%
44 306 0.36% 0.46%
45 299 0.76% 0.45%
46 298 0.70% 0.45%
47 295 2.81% 0.44%
48 281 0.68% 0.42%
49 275 0.36% 0.41%
50 252 1.26% 0.38%
51 250 0.68% 0.38%
52 248 1.16% 0.37%
53 243 0.50% 0.37%
54 226 0.82% 0.34%
55 220 2.64% 0.33%
56 218 0.78% 0.33%
56 218 0.40% 0.33%
57 200 0.76% 0.30%
58 199 1.11% 0.30%
59 195 1.62% 0.29%
60 187 1.25% 0.28%
61 182 1.21% 0.27%
62 180 1.25% 0.27%
63 173 3.38% 0.26%
64 170 4.45% 0.26%
65 164 0.38% 0.25%
65 164 0.96% 0.25%
66 163 1.12% 0.24%
67 162 0.47% 0.24%
68 160 1.63% 0.24%
69 157 0.32% 0.24%
70 154 0.19% 0.23%
71 152 1.05% 0.23%
72 150 0.67% 0.23%
73 149 0.26% 0.22%
74 148 0.72% 0.22%
75 143 1.25% 0.21%
76 133 0.45% 0.20%
77 132 0.61% 0.20%
78 128 1.17% 0.19%
78 128 3.74% 0.19%
79 126 0.45% 0.19%
80 125 2.43% 0.19%
81 119 1.30% 0.18%
82 118 0.47% 0.18%
83 117 1.78% 0.18%
84 114 0.74% 0.17%
85 113 0.50% 0.17%
86 104 0.32% 0.16%
86 104 0.43% 0.16%
87 102 1.02% 0.15%
88 101 0.36% 0.15%
89 100 0.75% 0.15%
90 99 0.54% 0.15%
90 99 0.61% 0.15%
91 97 0.65% 0.15%
91 97 0.82% 0.15%
92 94 0.47% 0.14%
93 93 0.15% 0.14%
93 93 2.95% 0.14%
93 93 0.39% 0.14%
94 92 0.69% 0.14%
95 89 1.41% 0.13%
96 88 0.27% 0.13%
97 87 0.26% 0.13%
98 86 1.47% 0.13%
98 86 1.10% 0.13%
99 85 0.41% 0.13%
100 84 0.29% 0.13%
101 82 1.86% 0.12%
101 82 0.26% 0.12%
102 81 1.36% 0.12%
102 81 0.41% 0.12%
102 81 4.76% 0.12%
103 80 0.52% 0.12%
103 80 0.88% 0.12%
104 78 0.24% 0.12%
104 78 0.26% 0.12%
105 77 0.70% 0.12%
106 76 0.97% 0.11%
107 70 1.07% 0.11%
108 69 0.25% 0.10%
108 69 1.47% 0.10%
108 69 0.75% 0.10%
109 68 0.37% 0.10%
110 67 0.63% 0.10%
111 66 0.22% 0.10%
112 65 0.20% 0.10%
113 64 2.45% 0.10%
114 63 3.28% 0.09%
115 62 0.77% 0.09%
115 62 0.13% 0.09%
115 62 0.69% 0.09%
115 62 1.40% 0.09%
116 61 2.07% 0.09%
117 59 3.07% 0.09%
117 59 0.75% 0.09%
118 57 0.86% 0.09%
118 57 0.21% 0.09%
118 57 1.12% 0.09%
118 57 0.09% 0.09%
119 56 0.29% 0.08%
119 56 2.32% 0.08%
119 56 0.70% 0.08%
119 56 0.92% 0.08%
119 56 0.85% 0.08%
120 55 0.29% 0.08%
120 55 2.54% 0.08%
121 52 0.46% 0.08%
121 52 0.14% 0.08%
122 51 0.30% 0.08%
123 50 0.31% 0.08%
123 50 0.16% 0.08%
123 50 0.44% 0.08%
124 49 0.11% 0.07%
124 49 0.97% 0.07%
125 48 0.55% 0.07%
125 48 0.11% 0.07%
126 46 0.23% 0.07%
127 45 0.59% 0.07%
127 45 0.53% 0.07%
127 45 1.11% 0.07%
128 44 0.67% 0.07%
129 43 0.68% 0.06%
129 43 1.21% 0.06%
130 42 0.52% 0.06%
131 41 0.34% 0.06%
131 41 2.28% 0.06%
131 41 0.43% 0.06%
132 39 0.87% 0.06%
132 39 0.20% 0.06%
132 39 0.16% 0.06%
133 38 0.33% 0.06%
134 37 1.10% 0.06%
135 36 2.18% 0.05%
136 34 0.36% 0.05%
136 34 0.34% 0.05%
136 34 0.20% 0.05%
136 34 0.63% 0.05%
137 33 0.27% 0.05%
137 33 1.08% 0.05%
137 33 0.88% 0.05%
137 33 0.47% 0.05%
138 32 3.39% 0.05%
138 32 1.33% 0.05%
138 32 0.32% 0.05%
139 31 1.29% 0.05%
139 31 2.43% 0.05%
139 31 0.53% 0.05%
139 31 0.15% 0.05%
139 31 0.59% 0.05%
139 31 0.26% 0.05%
140 30 0.67% 0.05%
140 30 1.55% 0.05%
140 30 0.30% 0.05%
140 30 0.19% 0.05%
141 29 0.25% 0.04%
141 29 0.70% 0.04%
141 29 0.09% 0.04%
142 28 0.13% 0.04%
142 28 0.62% 0.04%
142 28 0.81% 0.04%
143 26 0.05% 0.04%
143 26 0.94% 0.04%
143 26 1.00% 0.04%
143 26 0.18% 0.04%
143 26 0.81% 0.04%
144 25 0.51% 0.04%
144 25 1.09% 0.04%
144 25 0.31% 0.04%
144 25 0.20% 0.04%
145 24 0.08% 0.04%
145 24 0.86% 0.04%
145 24 0.16% 0.04%
145 24 0.20% 0.04%
145 24 0.18% 0.04%
145 24 0.33% 0.04%
146 23 0.71% 0.03%
146 23 1.23% 0.03%
147 22 1.08% 0.03%
147 22 1.08% 0.03%
147 22 0.35% 0.03%
147 22 0.34% 0.03%
147 22 0.13% 0.03%
148 21 0.67% 0.03%
148 21 1.27% 0.03%
148 21 0.96% 0.03%
148 21 2.33% 0.03%
148 21 0.27% 0.03%
148 21 0.81% 0.03%
148 21 0.47% 0.03%
149 20 0.72% 0.03%
149 20 0.10% 0.03%
149 20 0.40% 0.03%
149 20 0.74% 0.03%
149 20 0.42% 0.03%
149 20 2.22% 0.03%
149 20 2.26% 0.03%
149 20 0.14% 0.03%
150 19 0.24% 0.03%
150 19 0.29% 0.03%
150 19 2.01% 0.03%
150 19 0.36% 0.03%
150 19 0.41% 0.03%
151 18 0.59% 0.03%
151 18 0.51% 0.03%
151 18 0.14% 0.03%
152 17 0.39% 0.03%
152 17 0.60% 0.03%
152 17 0.61% 0.03%
152 17 0.48% 0.03%
152 17 0.11% 0.03%
152 17 0.52% 0.03%
152 17 0.25% 0.03%
153 16 1.00% 0.02%
153 16 0.65% 0.02%
153 16 0.09% 0.02%
153 16 0.61% 0.02%
153 16 0.10% 0.02%
153 16 0.87% 0.02%
153 16 0.35% 0.02%
153 16 0.40% 0.02%
153 16 3.10% 0.02%
154 15 0.81% 0.02%
154 15 1.15% 0.02%
154 15 0.59% 0.02%
154 15 0.35% 0.02%
154 15 0.16% 0.02%
155 14 0.56% 0.02%
155 14 0.36% 0.02%
155 14 0.09% 0.02%
155 14 0.09% 0.02%
155 14 0.31% 0.02%
155 14 0.34% 0.02%
156 13 0.33% 0.02%
156 13 0.61% 0.02%
156 13 0.29% 0.02%
156 13 1.46% 0.02%
156 13 0.17% 0.02%
156 13 0.19% 0.02%
156 13 0.28% 0.02%
156 13 0.46% 0.02%
156 13 0.19% 0.02%
157 12 0.19% 0.02%
157 12 0.05% 0.02%
157 12 0.30% 0.02%
157 12 0.22% 0.02%
157 12 0.73% 0.02%
157 12 0.14% 0.02%
157 12 0.05% 0.02%
157 12 0.59% 0.02%
158 11 1.18% 0.02%
158 11 0.08% 0.02%
158 11 0.13% 0.02%
158 11 0.62% 0.02%
158 11 0.71% 0.02%
158 11 0.57% 0.02%
158 11 0.17% 0.02%
159 10 0.38% 0.02%
159 10 0.55% 0.02%
159 10 1.12% 0.02%
159 10 0.69% 0.02%
159 10 0.03% 0.02%
159 10 0.12% 0.02%
159 10 0.39% 0.02%
159 10 0.50% 0.02%
159 10 0.27% 0.02%
159 10 0.35% 0.02%
159 10 0.14% 0.02%
159 10 0.82% 0.02%
159 10 0.76% 0.02%
159 10 0.44% 0.02%
159 10 2.29% 0.02%
160 9 0.12% 0.01%
160 9 0.27% 0.01%
160 9 0.68% 0.01%
160 9 0.15% 0.01%
160 9 0.09% 0.01%
160 9 0.48% 0.01%
160 9 0.11% 0.01%
160 9 0.47% 0.01%
160 9 0.27% 0.01%
160 9 1.66% 0.01%
160 9 0.08% 0.01%
160 9 0.05% 0.01%
160 9 0.08% 0.01%
160 9 0.49% 0.01%
160 9 0.35% 0.01%
160 9 0.23% 0.01%
160 9 0.34% 0.01%
161 8 0.08% 0.01%
161 8 0.36% 0.01%
161 8 0.11% 0.01%
161 8 0.23% 0.01%
161 8 0.24% 0.01%
161 8 0.21% 0.01%
161 8 0.07% 0.01%
161 8 0.26% 0.01%
161 8 0.32% 0.01%
161 8 0.14% 0.01%
161 8 0.66% 0.01%
161 8 0.17% 0.01%
161 8 0.27% 0.01%
162 7 0.61% 0.01%
162 7 0.28% 0.01%
162 7 0.25% 0.01%
162 7 0.15% 0.01%
162 7 0.43% 0.01%
162 7 0.26% 0.01%
162 7 0.15% 0.01%
162 7 0.15% 0.01%
162 7 0.20% 0.01%
162 7 0.52% 0.01%
162 7 0.08% 0.01%
162 7 0.58% 0.01%
162 7 0.58% 0.01%
162 7 0.20% 0.01%
162 7 0.05% 0.01%
163 6 0.13% 0.01%
163 6 0.04% 0.01%
163 6 0.28% 0.01%
163 6 0.32% 0.01%
163 6 0.50% 0.01%
163 6 0.18% 0.01%
163 6 0.05% 0.01%
163 6 0.65% 0.01%
163 6 0.59% 0.01%
163 6 0.42% 0.01%
163 6 0.40% 0.01%
163 6 0.05% 0.01%
163 6 0.12% 0.01%
163 6 0.65% 0.01%
163 6 0.10% 0.01%
163 6 0.04% 0.01%
163 6 0.36% 0.01%
163 6 0.39% 0.01%
163 6 0.20% 0.01%
164 5 0.17% 0.01%
164 5 0.23% 0.01%
164 5 0.06% 0.01%
164 5 0.28% 0.01%
164 5 0.25% 0.01%
164 5 0.30% 0.01%
164 5 0.08% 0.01%
164 5 0.21% 0.01%
164 5 0.18% 0.01%
164 5 0.06% 0.01%
164 5 0.52% 0.01%
164 5 0.21% 0.01%
164 5 0.09% 0.01%
164 5 0.26% 0.01%
164 5 0.40% 0.01%
164 5 0.19% 0.01%
164 5 0.26% 0.01%
164 5 0.20% 0.01%
164 5 0.38% 0.01%
164 5 0.23% 0.01%
165 4 0.17% 0.01%
165 4 0.19% 0.01%
165 4 0.06% 0.01%
165 4 0.35% 0.01%
165 4 0.32% 0.01%
165 4 0.05% 0.01%
165 4 0.33% 0.01%
165 4 0.05% 0.01%
165 4 0.66% 0.01%
165 4 0.31% 0.01%
165 4 0.06% 0.01%
165 4 0.39% 0.01%
165 4 0.05% 0.01%
165 4 0.17% 0.01%
165 4 0.22% 0.01%
165 4 0.42% 0.01%
165 4 0.83% 0.01%
165 4 0.49% 0.01%
165 4 0.21% 0.01%
165 4 0.26% 0.01%
165 4 0.08% 0.01%
165 4 0.22% 0.01%
166 3 0.30% 0.00%
166 3 0.10% 0.00%
166 3 0.17% 0.00%
166 3 0.15% 0.00%
166 3 0.13% 0.00%
166 3 0.25% 0.00%
166 3 0.24% 0.00%
166 3 0.15% 0.00%
166 3 0.22% 0.00%
166 3 0.45% 0.00%
166 3 0.21% 0.00%
166 3 0.17% 0.00%
166 3 0.39% 0.00%
166 3 0.21% 0.00%
166 3 0.24% 0.00%
166 3 0.15% 0.00%
166 3 0.46% 0.00%
166 3 0.11% 0.00%
166 3 0.36% 0.00%
166 3 0.21% 0.00%
166 3 0.08% 0.00%
166 3 0.12% 0.00%
166 3 0.17% 0.00%
166 3 0.10% 0.00%
166 3 0.14% 0.00%
166 3 0.16% 0.00%
166 3 0.17% 0.00%
167 2 0.02% 0.00%
167 2 0.14% 0.00%
167 2 0.06% 0.00%
167 2 0.22% 0.00%
167 2 0.09% 0.00%
167 2 0.32% 0.00%
167 2 0.11% 0.00%
167 2 0.06% 0.00%
167 2 0.20% 0.00%
167 2 0.11% 0.00%
167 2 0.08% 0.00%
167 2 0.15% 0.00%
167 2 0.10% 0.00%
167 2 0.04% 0.00%
167 2 0.07% 0.00%
167 2 0.35% 0.00%
167 2 0.27% 0.00%
167 2 0.21% 0.00%
168 1 0.10% 0.00%
168 1 0.09% 0.00%
168 1 0.05% 0.00%
168 1 0.06% 0.00%
168 1 0.05% 0.00%
168 1 0.07% 0.00%
168 1 0.08% 0.00%
168 1 0.02% 0.00%
168 1 0.06% 0.00%
168 1 0.06% 0.00%
168 1 0.06% 0.00%
168 1 0.01% 0.00%
168 1 0.05% 0.00%
168 1 0.02% 0.00%
168 1 0.06% 0.00%
168 1 0.07% 0.00%
168 1 0.13% 0.00%
168 1 0.05% 0.00%
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
169 0 - -
Need the complete table? Full rankings and the underlying data sets for California and other locations are available for purchase or license.

Methodology

This ranking list is based on data from the American Community Survey (ACS) 5-Year Estimates, conducted by the U.S. Census Bureau. The ACS is one of the most reliable sources for understanding population trends across different locations, and it provides estimates for various racial and ethnic groups at city, county, state and all geography levels down to the Census block group.
This list ranks city in Michigan by their Chinese population, using the most recent ACS data available.

How the Census defines Chinese population

The U.S. Census Bureau allows people to self-identify their ancestry, meaning individuals can write upto ancestries when responding to the survey. In this ranking, we include everyone who identifies as having Chinese ancestry, whether alone or in combination with another ancestry.
Here are a few important things to know about how ancestry is reported:
  • Some people identify as Chinese alone, while others identify as Chinese along with another race (such as Chinese and German).
  • We’ve used the “Chinese alone or in any combination” category unless noted otherwise, which gives a broader picture of the Chinese population in each area.

How We Ranked the Data

This ranking is based on the total number of people who identified as Chinese alone or in combination in city. To provide additional context, we’ve also included two key percentages:
  1. % of Total City Population – This shows what percentage of the total state population identifies as Chinese .
  2. % of Total Michigan Chinese Population – This tells us how much of the entire U.S. Chinese population lives in that state.
To keep things simple, all population numbers have been rounded to the nearest whole number, and percentages are rounded to one decimal place. Because of rounding, some percentages may not add up to exactly 100%.

Things to Keep in Mind

Like all survey-based data, ACS estimates come with some limitations. Here are a few things to be aware of:
  • In places with very small Chinese populations, the numbers may not be reported at all due to privacy protections or sampling variability in the survey.
  • Since the ACS is based on a sample, the numbers are estimates, not exact counts. That means they may slightly differ from other sources like the decennial U.S. Census.
  • City that don’t have any reported Chinese population are not included in the ranking but are listed separately below for reference.
This ranking is meant to provide a clear, data-driven look at where Chinese populations are most concentrated while keeping the numbers easy to understand.

Sources

  1. 2019-2023 5-Year Estimates.
  2. 2023.