Japanese Population in Michigan by City : 2025 Ranking & Insights

The Japanese population in Michigan is reported as 24,695, with the largest concentrations in cities like Novi (3,495), Ann Arbor (1,198), and West Bloomfield charter township (965). Interestingly, the combined city-level total exceeds the statewide figure - a discrepancy that may reflect rounding, reporting lags, or cross-boundary overlaps in census data. This distribution highlights strong urban clustering alongside possible undercounts in state-level aggregates. The analysis below explores how Japanese communities take shape across Michigan and how these patterns compare with other states across the nation.

Top 5 cities with the largest Japanese population in Michigan

  • 1
    Novi
    Japanese population in Novi is 3,495
    5.28% of Novi population is Japanese
  • 2
    Ann Arbor
    Japanese population in Ann Arbor is 1,198
    0.99% of Ann Arbor population is Japanese
  • 3
    West Bloomfield charter township
    Japanese population in West Bloomfield charter township is 965
    1.47% of West Bloomfield charter township population is Japanese
  • 4
    Commerce charter township
    Japanese population in Commerce charter township is 776
    1.80% of Commerce charter township population is Japanese
  • 5
    Livonia
    Japanese population in Livonia is 591
    0.63% of Livonia population is Japanese

Overview of Japanese population in Michigan

  • Population Count and Percentage: American Community Survey data indicate Michigan contains 24,695 Japanese residents (0.25% of 10.1 million total state population), positioning the state at the 75th percentile nationally among U.S. states for Japanese population concentrations.
  • Comparison to State and National Averages: U.S. Census surveys show Michigan's Japanese demographic representation of 0.25% remains below the national average of 0.49%, positioning the state below typical U.S. demographic distribution patterns.
  • Share of Total National Population: Official American Community Survey document Michigan's 24,695 Japanese residents constitute 1.5% of the nation's total Japanese population of 1.6 million, providing the state with a measurable but modest share of the national demographic community.
  • Population Density per Square Mile: U.S. Census Bureau's American Community Survey data indicates Michigan maintains 0.44 Japanese Americans per square mile, marginally below the national average of 0.46 per square mile, placing the state near national demographic representation levels.
  • Need additional overviews? Extended research data available for purchase and license. ➔

1,552 Cities in Michigan Ranked by Japanese Population

American Community Survey data [1] show Japanese population in Michigan present in Novi, Ann Arbor, and West Bloomfield charter township, along with several other incorporated cities reporting non-zero populations. The table below provides broader statistics, including total population figures, density measures, and demographic distributions based on current ACS data for all incorporated cities included in this analysis*.
cities in Michigan ranked by Japanese population count
Rank by Japanese Population
City
Japanese Population
% of Total City Population
% of Total Michigan Japanese Population
5 Year Rank Trend
1 Novi 3,495 5.28% 14.15%
2 Ann Arbor 1,198 0.99% 4.85%
3 West Bloomfield charter township 965 1.47% 3.91%
4 Commerce charter township 776 1.80% 3.14%
5 Livonia 591 0.63% 2.39%
6 Canton charter township 570 0.58% 2.31%
7 Kentwood 510 0.94% 2.07%
8 459 0.60% 1.86%
8 459 0.53% 1.86%
9 446 0.54% 1.81%
10 395 0.06% 1.60%
11 371 0.82% 1.50%
11 371 0.44% 1.50%
12 274 5.72% 1.11%
13 251 0.18% 1.02%
14 248 0.47% 1.00%
15 242 0.26% 0.98%
16 226 0.23% 0.92%
17 216 0.39% 0.87%
18 206 0.36% 0.83%
19 204 0.46% 0.83%
20 201 0.26% 0.81%
21 199 0.63% 0.81%
22 198 0.18% 0.80%
23 189 0.45% 0.77%
24 179 0.09% 0.72%
25 176 1.77% 0.71%
25 176 0.45% 0.71%
26 168 0.99% 0.68%
27 166 0.60% 0.67%
28 155 0.91% 0.63%
29 150 1.89% 0.61%
30 146 0.11% 0.59%
31 145 0.82% 0.59%
32 143 0.43% 0.58%
33 139 0.54% 0.56%
33 139 0.18% 0.56%
34 136 0.31% 0.55%
35 132 0.27% 0.53%
36 131 1.14% 0.53%
36 131 0.36% 0.53%
37 126 0.87% 0.51%
38 124 0.17% 0.50%
39 122 0.38% 0.49%
39 122 0.42% 0.49%
40 120 0.48% 0.49%
41 116 0.17% 0.47%
42 114 0.95% 0.46%
42 114 0.96% 0.46%
43 112 0.19% 0.45%
44 108 0.27% 0.44%
45 106 0.36% 0.43%
45 106 2.22% 0.43%
46 104 0.55% 0.42%
47 103 2.14% 0.42%
48 100 2.23% 0.40%
49 99 1.73% 0.40%
50 95 0.99% 0.38%
51 93 0.12% 0.38%
52 92 1.42% 0.37%
53 91 1.50% 0.37%
54 89 0.29% 0.36%
54 89 4.91% 0.36%
54 89 3.02% 0.36%
55 85 0.19% 0.34%
55 85 0.48% 0.34%
56 83 0.15% 0.34%
57 82 0.40% 0.33%
58 81 0.61% 0.33%
59 80 0.87% 0.32%
60 77 0.32% 0.31%
60 77 0.42% 0.31%
61 76 1.01% 0.31%
61 76 2.00% 0.31%
62 73 0.50% 0.30%
63 72 0.26% 0.29%
64 71 0.22% 0.29%
64 71 0.18% 0.29%
65 70 0.54% 0.28%
66 69 0.43% 0.28%
66 69 0.41% 0.28%
67 68 1.00% 0.28%
68 67 0.45% 0.27%
69 64 0.23% 0.26%
70 63 0.42% 0.26%
70 63 0.13% 0.26%
71 62 0.06% 0.25%
72 61 0.23% 0.25%
73 60 0.30% 0.24%
74 58 1.14% 0.23%
74 58 7.03% 0.23%
74 58 0.65% 0.23%
75 57 0.41% 0.23%
76 56 0.28% 0.23%
77 54 0.09% 0.22%
78 53 1.09% 0.21%
79 52 0.55% 0.21%
79 52 0.16% 0.21%
79 52 0.52% 0.21%
80 51 0.26% 0.21%
80 51 0.49% 0.21%
80 51 0.21% 0.21%
81 50 0.24% 0.20%
81 50 0.25% 0.20%
81 50 0.18% 0.20%
82 49 1.46% 0.20%
83 48 0.42% 0.19%
83 48 0.27% 0.19%
84 45 0.81% 0.18%
85 44 0.11% 0.18%
85 44 0.11% 0.18%
86 43 0.22% 0.17%
86 43 4.48% 0.17%
86 43 0.11% 0.17%
86 43 1.55% 0.17%
87 42 0.78% 0.17%
88 41 0.39% 0.17%
88 41 0.15% 0.17%
88 41 0.19% 0.17%
88 41 1.47% 0.17%
88 41 0.31% 0.17%
88 41 0.17% 0.17%
89 40 0.13% 0.16%
89 40 0.33% 0.16%
89 40 0.17% 0.16%
90 39 1.96% 0.16%
91 37 0.06% 0.15%
91 37 0.45% 0.15%
92 36 0.46% 0.15%
92 36 2.58% 0.15%
93 34 0.17% 0.14%
93 34 0.69% 0.14%
93 34 1.03% 0.14%
94 33 1.62% 0.13%
94 33 1.56% 0.13%
95 32 0.15% 0.13%
95 32 1.33% 0.13%
96 31 0.82% 0.13%
96 31 0.14% 0.13%
96 31 0.62% 0.13%
97 30 0.21% 0.12%
97 30 0.20% 0.12%
98 29 0.34% 0.12%
98 29 0.15% 0.12%
98 29 1.62% 0.12%
98 29 0.10% 0.12%
98 29 0.53% 0.12%
99 28 0.29% 0.11%
99 28 0.28% 0.11%
99 28 0.11% 0.11%
100 27 0.23% 0.11%
100 27 0.44% 0.11%
100 27 0.18% 0.11%
100 27 0.35% 0.11%
100 27 0.17% 0.11%
101 26 0.21% 0.11%
101 26 0.88% 0.11%
101 26 0.25% 0.11%
101 26 0.42% 0.11%
101 26 0.16% 0.11%
101 26 0.42% 0.11%
101 26 0.29% 0.11%
102 25 0.27% 0.10%
102 25 0.23% 0.10%
103 24 0.09% 0.10%
103 24 1.54% 0.10%
103 24 0.08% 0.10%
104 23 1.72% 0.09%
104 23 1.17% 0.09%
105 22 1.17% 0.09%
105 22 2.09% 0.09%
105 22 0.79% 0.09%
105 22 0.30% 0.09%
105 22 0.07% 0.09%
106 21 1.27% 0.09%
106 21 0.18% 0.09%
106 21 1.74% 0.09%
106 21 0.10% 0.09%
107 20 0.28% 0.08%
107 20 0.12% 0.08%
107 20 0.06% 0.08%
107 20 0.92% 0.08%
107 20 0.32% 0.08%
107 20 0.33% 0.08%
107 20 0.13% 0.08%
107 20 0.51% 0.08%
107 20 0.07% 0.08%
107 20 0.25% 0.08%
107 20 1.65% 0.08%
108 19 0.44% 0.08%
108 19 1.04% 0.08%
108 19 0.43% 0.08%
108 19 2.29% 0.08%
108 19 0.19% 0.08%
108 19 0.08% 0.08%
108 19 1.99% 0.08%
108 19 1.85% 0.08%
108 19 1.09% 0.08%
108 19 0.36% 0.08%
109 18 0.42% 0.07%
109 18 0.22% 0.07%
109 18 2.28% 0.07%
109 18 1.04% 0.07%
109 18 0.53% 0.07%
109 18 0.82% 0.07%
110 17 0.16% 0.07%
110 17 0.56% 0.07%
110 17 0.45% 0.07%
110 17 0.11% 0.07%
110 17 0.64% 0.07%
110 17 0.18% 0.07%
111 16 0.78% 0.06%
111 16 0.08% 0.06%
111 16 0.14% 0.06%
111 16 1.16% 0.06%
111 16 0.43% 0.06%
111 16 0.20% 0.06%
111 16 0.39% 0.06%
111 16 3.05% 0.06%
111 16 0.25% 0.06%
111 16 0.14% 0.06%
111 16 0.05% 0.06%
111 16 0.09% 0.06%
112 15 0.20% 0.06%
112 15 0.07% 0.06%
112 15 0.87% 0.06%
112 15 2.07% 0.06%
112 15 0.65% 0.06%
112 15 0.52% 0.06%
112 15 0.08% 0.06%
112 15 0.14% 0.06%
112 15 0.17% 0.06%
112 15 0.23% 0.06%
112 15 0.21% 0.06%
113 14 0.32% 0.06%
113 14 0.59% 0.06%
113 14 0.43% 0.06%
113 14 0.39% 0.06%
113 14 0.27% 0.06%
113 14 0.06% 0.06%
114 13 0.16% 0.05%
114 13 0.07% 0.05%
114 13 0.79% 0.05%
114 13 0.50% 0.05%
114 13 0.38% 0.05%
114 13 0.06% 0.05%
115 12 0.23% 0.05%
115 12 0.48% 0.05%
115 12 0.20% 0.05%
115 12 0.55% 0.05%
115 12 0.07% 0.05%
115 12 0.72% 0.05%
115 12 0.42% 0.05%
115 12 1.70% 0.05%
115 12 0.28% 0.05%
115 12 0.08% 0.05%
115 12 0.03% 0.05%
115 12 0.02% 0.05%
115 12 0.13% 0.05%
115 12 0.10% 0.05%
115 12 0.46% 0.05%
115 12 0.68% 0.05%
116 11 0.01% 0.04%
116 11 0.34% 0.04%
116 11 0.59% 0.04%
116 11 0.17% 0.04%
116 11 0.10% 0.04%
116 11 0.28% 0.04%
117 10 0.26% 0.04%
117 10 0.25% 0.04%
117 10 1.36% 0.04%
117 10 0.17% 0.04%
117 10 0.05% 0.04%
117 10 0.53% 0.04%
117 10 0.23% 0.04%
117 10 0.11% 0.04%
118 9 1.01% 0.04%
118 9 0.14% 0.04%
118 9 0.64% 0.04%
118 9 0.60% 0.04%
118 9 0.15% 0.04%
118 9 0.36% 0.04%
118 9 0.13% 0.04%
118 9 0.26% 0.04%
118 9 0.22% 0.04%
118 9 0.10% 0.04%
118 9 0.49% 0.04%
118 9 0.95% 0.04%
119 8 0.05% 0.03%
119 8 0.26% 0.03%
119 8 0.03% 0.03%
119 8 0.35% 0.03%
119 8 0.17% 0.03%
119 8 0.30% 0.03%
119 8 0.17% 0.03%
119 8 0.97% 0.03%
119 8 0.03% 0.03%
120 7 0.25% 0.03%
120 7 0.19% 0.03%
120 7 0.78% 0.03%
120 7 0.37% 0.03%
120 7 0.08% 0.03%
120 7 0.38% 0.03%
120 7 0.25% 0.03%
120 7 0.78% 0.03%
120 7 0.43% 0.03%
121 6 0.39% 0.02%
121 6 0.46% 0.02%
121 6 0.06% 0.02%
121 6 0.52% 0.02%
121 6 0.33% 0.02%
121 6 0.04% 0.02%
121 6 0.23% 0.02%
121 6 0.02% 0.02%
121 6 0.13% 0.02%
121 6 0.26% 0.02%
121 6 0.23% 0.02%
121 6 0.34% 0.02%
121 6 0.64% 0.02%
121 6 0.55% 0.02%
121 6 0.64% 0.02%
121 6 0.45% 0.02%
121 6 0.26% 0.02%
121 6 0.05% 0.02%
121 6 0.60% 0.02%
121 6 0.31% 0.02%
122 5 0.44% 0.02%
122 5 0.13% 0.02%
122 5 0.11% 0.02%
122 5 0.22% 0.02%
122 5 0.19% 0.02%
122 5 0.19% 0.02%
122 5 0.19% 0.02%
122 5 0.21% 0.02%
122 5 0.10% 0.02%
122 5 0.10% 0.02%
122 5 0.06% 0.02%
122 5 0.36% 0.02%
122 5 0.52% 0.02%
122 5 0.39% 0.02%
122 5 0.25% 0.02%
122 5 0.04% 0.02%
122 5 0.31% 0.02%
122 5 0.13% 0.02%
122 5 0.24% 0.02%
122 5 0.23% 0.02%
123 4 0.43% 0.02%
123 4 0.05% 0.02%
123 4 0.12% 0.02%
123 4 0.38% 0.02%
123 4 0.07% 0.02%
123 4 0.34% 0.02%
123 4 0.18% 0.02%
123 4 0.36% 0.02%
123 4 0.57% 0.02%
123 4 0.02% 0.02%
123 4 0.57% 0.02%
123 4 0.28% 0.02%
123 4 0.60% 0.02%
123 4 0.74% 0.02%
123 4 0.31% 0.02%
123 4 0.15% 0.02%
123 4 0.22% 0.02%
123 4 0.20% 0.02%
123 4 0.16% 0.02%
124 3 0.02% 0.01%
124 3 0.41% 0.01%
124 3 0.14% 0.01%
124 3 0.15% 0.01%
124 3 0.39% 0.01%
124 3 0.34% 0.01%
124 3 0.22% 0.01%
124 3 0.09% 0.01%
124 3 0.31% 0.01%
124 3 0.15% 0.01%
124 3 0.28% 0.01%
124 3 0.25% 0.01%
124 3 0.04% 0.01%
124 3 0.18% 0.01%
124 3 0.17% 0.01%
124 3 0.19% 0.01%
124 3 0.28% 0.01%
125 2 0.09% 0.01%
125 2 0.33% 0.01%
125 2 0.30% 0.01%
125 2 0.07% 0.01%
125 2 0.24% 0.01%
125 2 0.20% 0.01%
125 2 0.23% 0.01%
125 2 0.06% 0.01%
125 2 0.08% 0.01%
125 2 0.14% 0.01%
125 2 0.16% 0.01%
125 2 0.05% 0.01%
125 2 0.12% 0.01%
125 2 0.15% 0.01%
125 2 0.11% 0.01%
126 1 0.11% 0.00%
126 1 0.06% 0.00%
126 1 0.05% 0.00%
126 1 0.09% 0.00%
126 1 0.02% 0.00%
126 1 0.05% 0.00%
126 1 0.04% 0.00%
126 1 0.06% 0.00%
126 1 0.06% 0.00%
126 1 0.12% 0.00%
126 1 0.00% 0.00%
126 1 0.08% 0.00%
126 1 0.16% 0.00%
126 1 0.01% 0.00%
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
127 0 - -
Need the complete table? Full rankings and the underlying data sets for California and other locations are available for purchase or license.

Methodology

This ranking list is based on data from the American Community Survey (ACS) 5-Year Estimates, conducted by the U.S. Census Bureau. The ACS is one of the most reliable sources for understanding population trends across different locations, and it provides estimates for various racial and ethnic groups at city, county, state and all geography levels down to the Census block group.
This list ranks city in Michigan by their Japanese population, using the most recent ACS data available.

How the Census defines Japanese population

The U.S. Census Bureau allows people to self-identify their ancestry, meaning individuals can write upto ancestries when responding to the survey. In this ranking, we include everyone who identifies as having Japanese ancestry, whether alone or in combination with another ancestry.
Here are a few important things to know about how ancestry is reported:
  • Some people identify as Japanese alone, while others identify as Japanese along with another race (such as Japanese and German).
  • We’ve used the “Japanese alone or in any combination” category unless noted otherwise, which gives a broader picture of the Japanese population in each area.

How We Ranked the Data

This ranking is based on the total number of people who identified as Japanese alone or in combination in city. To provide additional context, we’ve also included two key percentages:
  1. % of Total City Population – This shows what percentage of the total state population identifies as Japanese .
  2. % of Total Michigan Japanese Population – This tells us how much of the entire U.S. Japanese population lives in that state.
To keep things simple, all population numbers have been rounded to the nearest whole number, and percentages are rounded to one decimal place. Because of rounding, some percentages may not add up to exactly 100%.

Things to Keep in Mind

Like all survey-based data, ACS estimates come with some limitations. Here are a few things to be aware of:
  • In places with very small Japanese populations, the numbers may not be reported at all due to privacy protections or sampling variability in the survey.
  • Since the ACS is based on a sample, the numbers are estimates, not exact counts. That means they may slightly differ from other sources like the decennial U.S. Census.
  • City that don’t have any reported Japanese population are not included in the ranking but are listed separately below for reference.
This ranking is meant to provide a clear, data-driven look at where Japanese populations are most concentrated while keeping the numbers easy to understand.

Sources

  1. 2019-2023 5-Year Estimates.
  2. 2023.